dtft,如何在MATLAB里实现信号的快速傅里叶变换FFT?
代码:

1 N=8; %原离散信号有8点
2 n=[0:1:N-1] %原信号是1行8列的矩阵
3 xn=0.5.^n; %构建原始信号,为指数信号
4
5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去)
6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得
7 subplot(311)
8 stem(n,xn);
9 title('原始信号(指数信号)');
10 subplot(312);
11 plot(w/pi,abs(X));
12 title('DTFT变换')
离散傅里叶变换DFT和离散时间傅里叶变换DTFT的区别?
一、两者的实质不同:
1、离散傅里叶变换DFT的实质:离散时间傅里叶变换。
2、离散时间傅里叶变换DTFT的实质:序列的傅里叶变换。
二、两者的结果不同:
1、离散傅里叶变换DFT的结果:傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。
2、离散时间傅里叶变换DTFT的结果:原信号如果是非周期函数,DTFT变换后是连续函数;原信号如果是周期函数,DTFT变换后是离散函数。 三、两者的周期不同:
1、离散傅里叶变换DFT的周期:
(1)从序列DFT与序列FT之间的关系考虑X(k)是对频谱X(ejω)在[0,2π]上的N点等间隔采样,当不限定k的取值范围在[0,N-1]时,那么k的取值就在[0,2π]以外,从而形成了对频谱X(ejω)的等间隔采样。
由于X(ejω)是周期的,这种采样就必然形成一个周期序列。
(2)从DFT与DFS之间的关系考虑。X(k)= ∑n={0,N-1}x(n) WNexp^nk,当不限定N时,具有周期性。
(3)从WN来考虑,当不限定N时,具有周期性。 2、离散时间傅里叶变换DTFT的周期: 将以离散时间信号X(n)变换到连续的频域,值得注意的是这一频谱是周期的,且周期为2π。 来源:-离散傅里叶变换 来源:-DTFT
dtft和ft有什么区别?
FT是DTFT,x(n)的频谱是 连续的谱,不能用计算机处理;
x(n)经过截断后[根据谱分辨率要求截断多长],为有限长的序列,DFT的结果是有限长的,正好是对 该有限长序列连续谱[DTFT]的在0~2pi上的等间隔采样,适合于计算机处理;而DFT又有FFT快速傅里叶变换算法,因此在各领域中得以广泛应用。
当然截断带来截断效应。
北航2023年人工智能考研大纲?
1、842人工智能基础综合试题含信号与系统、算法设计与分析和机器学习三门课程的内容。所有课程均不指定参考书。
2、试题总分为150分,每门课试题满分50分,三门课程的试题均计入考试成绩。
《信号与系统》考试大纲(50分)
一、复习要点
(一)信号与系统绪论
(1)信号与系统的概念;
(2)信号的描述、分类及常用信号;
(3)信号的基本运算。
(二)正交函数集与正交分解
(1)信号分解的物理意义;
(2)正交函数集;
(3)信号在正交函数集上的分解。
(三)连续周期信号的傅里叶级数
(1)连续周期信号在三角函数集上展开;
(2)连续周期信号傅里叶级数;
(3)有限项傅里叶级数与均方误差。
(四)连续信号的傅里叶变换
(1)非周期连续信号的傅里叶变换;
(2)典型信号的傅里叶变换;
(3)傅里叶变换的基本性质;
(4)周期信号的傅里叶变换。
(五)拉氏变换
(1)拉氏变换的定义、物理意义;
(2)拉氏变换的基本性质;
(3)拉氏逆变换;
(4)双边拉氏变换。
(六)连续时间系统的时域分析
(1)系统的概念、表示与分类;
(2)LTI系统分析方法概述;
(3)连续系统的时域经典分析法;
(4)零输入响应与零状态响应;
(5)卷积的定义与性质;
(6)卷积法求解系统响应。
(七)连续时间系统的S域分析
(1)系统函数;
(2)由系统函数零、极点分布分析时域特性;
(3)线性系统的稳定性分析。
(八)离散时间系统的时域分析
(1)离散时间信号(序列)及其表示;
(2)典型离散时间信号;
(3)离散时间信号的基本运算;
(4)离散时间系统的基本概念描述与分类;
(5)系统冲激响应函数的求解。
(九)离散时间系统的Z域分析
(1)z变换及其收敛域;
(2)典型序列的z变换;
(3)逆z变换;
(4)z变换的基本性质;
(5)系统函数与z域分析。
(十)离散信号的傅里叶分析
(1)离散周期信号的傅里叶级数DFS;
(2)序列的傅里叶变换离散时间傅里叶变换DTFT;
(3)离散傅里叶变换DFT;
(4)快速傅里叶变换FFT。
(十一)傅里叶变换及其图像处理应用
(1)数字图像简介;
(2)二维离散傅里叶变换2D DFT及其性质;
(3)2D DFT在图像处理中的应用。
《算法设计与分析》考试大纲(50分)
一、整体要求
(一)掌握算法的定义、性质和表示方法,并能够使用伪代码对算法进行描述;
(二)能够熟练采用渐近上界、渐近下界与渐近紧确界分析算法的运行时间;
(三)掌握算法设计的常用方法,包括分而治之、动态规划、贪心、近似算法;掌握图的基本概念和重要的基础图算法;
(四)掌握计算复杂性的基本概念和证明P类、NP类问题的方法;
(五)具有对简单计算问题的建模、分析、算法设计、算法优化和编程求解能力。
二、复习要点
(一)渐近复杂性分析
(1)O、Ω、Θ符号定义;
(2)分析给定算法的渐近复杂性;
(3)比较具有不同渐近上界的算法的效率;
(4)递归函数的运行时间分析。
(二)常用算法设计方法的基本思想和特点,以及针对具体问题设计相应的算法并分析其效率
(1)分治算法
(2)动态规划算法
(3)贪心算法
(4)近似算法
(三)图算法
(1)图的基本概念和基本性质;
(2)图的表示方法;
(3)图的遍历与搜索方法;
(4)最小生成树和最短路径等图具体问题算法。
(四)计算复杂性
(1)计算复杂性的基本概念,如判定问题、优化问题等;
(2)P类和NP类问题的定义和证明。
《机器学习》考试大纲(50分)
一、复习要点
(一)机器学习基础算法:(1)Bayesian学习以及相关算法;(2)Q学习基本概念;(3)归纳学习-决策树构建算法。
掌握机器学习发展历史、AlphaGO技术的发展历史以及核心技术,掌握Q学习的基本方法;掌握VC维的定义,以及统计学习理论的基本结论,深入理解经验风险和真实风险概念区别与联系;理解Bayesian的基本原理,贝叶斯学习、朴素贝叶斯算法在相关实际问题中应用;掌握HMM算法的基本原理;掌握信息熵概念的内涵、ID3算法构建过程、根据具体的实例,构建决策树。掌握信息增益的概念,以及在构建决策树时的物理含义。
(二)神经网络与深度学习:(1)线性分类器-感知机等;(2)传统神经网络-BP算法等;(3)深度学习-卷积神经网络等。
掌握线性分类器的构建方法,包括线性分类器的基本形式、构建方法;掌握感知机的构建方法、Fisher准则、最小均方误差准则。掌握机器学习里优化概念如何应用于线性分类器的设计。理解神经网络的反传算法基本原理、能够根据具体简单的网络实例写出反传公式的基本形式。了解经典深度神经网络模型、以及前沿技术,主要掌握卷积神经网络;理解卷积神经网络的构建过程、包括卷积操作的定义、Pooling操作的定义等。
(三)统计学习分类器:(1)支持向量机;(2)Adaboost算法;(3)子空间学习与稀疏表示。
理解统计学习理论的基本原理、支持向量机的基本原理与线性分类器的联系。掌握支持向量机的优化目标构造方法、优化算法以及应用。掌握Adaboost的基本原理,弱分类器的基本概念以及分类器融合算法。掌握子空间学习与稀疏表示的基本概念与思想,掌握主成分分析方法的具体过程、优化目标以及应用。基本了解Fisher判别分析、核判别分析等等;了解稀疏表示方法与子空间学习的联系与区别。
什么是所谓的信号加窗?
对模拟信号进行数字处理时,首先要对模拟信号进行采样,采样频率由奈奎斯特采样定理决定。对采样而来的数字信号进行DTFT处理得到其频谱。由DTFT的计算公式可知,DTFT的计算需要用到信号的所有采样点,当信号为无限长或者是相当长时,这样的计算不可行也没有实际意义。因此会把信号分成许多一定长度的数据段,然后分段处理。 如果把数据进行分段,相当于对信号进行了加矩形窗的处理,对加窗后的信号做DFT ,将会出现由于加窗而引入的高频分量。 既然加窗不可避免,就选择一个合适的吧。窗的形状有许多种, 选用合适的窗函数,则可以增大对高频分量的衰减。


还没有评论,来说两句吧...