驻点与极值点的关系,驻点和不可导点有什么区别?
1.函数在某点没定义,一定是不连续也不可导的。

2.函数在某一点可导需要同时满足下面三个条件:(1)左导数存在;(2)右导数存在;(3)左导数=右导数。三者缺一不可,所谓不可导点就是不同时满足上述三个条件的点。不可导点的情形如安鲁克所言。
3.驻点是一阶导数等于零的点,它是可导点集合的一个子集。驻点处函数的单调性可以改变(多数情形),也可以不改变(如y=x³或y=x^(1/3)之x=0处)
4.极值点既可以是驻点,也可以是不可导点(如锐角尖点的全部、直角尖点的部分)。驻点既可以是极值点,也可以不是极值点(如y=x³之x=0点)。驻点和极值点是集合相交的关系,不是集合包含的关系。
5.函数在某一点可导,必然连续,反之,函数在某点连续,不一定可导(如尖点,无论锐角尖点,还是钝角、直角尖点)。
三次函数驻点与极值点?
驻点是f'(x)=0的点是极值点;原函数在x=0点导数不为0,不是驻点。因此极值点不一定是驻点,驻点也不一定是极值点。
极值点既可导也可不导,极值点可导的情况是驻点,不可导的情况可以是尖点或角点。而驻点根据其概念,只要一阶导数为0就可以了,也不是说一定是极值点。
扩展资料:
对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。值得注意的是,一个函数的驻点不一定是这个函数的极值点(考虑到这一点左右一阶导数符号不改变的情况)。
反过来,在某设定区域内,一个函数的极值点也不一定是这个函数的驻点(考虑到边界条件),驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。
拐点驻点的表示方法的区别?
极值点不一定是驻点,驻点一定是极值点可参考y=x的绝对值 拐点是二阶导数等于0 三阶导数不等于零的点
驻点可以是端点吗?
有可能。
驻点就是导数等于零的点,例如y=x的3次方,只要取端点为0就是驻点。
可导函数的内部的极值点必定是它的驻点,但反过来,函数的驻点却不一定是极值点。
函数的:
1.极值点不一定是驻点。如y=|x|,在x=0点处不可导,故不是驻点,但是极(小)值点。
2.驻点也不一定是极值点。如y=x3,在x=0处导数为0,是驻点,但没有极值,故不是极值点。
驻点或不可导点不一定是极值点?
驻点或不可导点有可能是极值点。驻点和不可导点都可能是极值点。换句话说,极值点只能是驻点或不可导点,驻点或不可导点有可能是极值点,也有可能不是极值点。
如上所述,x=0是函数y=|x|的极小值点,却是不可导点;x=0是函数y=x^3的驻点,却不是极值点。
扩展资料:
若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。
极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。如果极值点不是边界点,就一定是内点。因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。
求极值点步骤
(1)求出f'(x)=0,f"(x)≠0的x值;
(2)用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
(3)上述所有点的集合即为极值点集合。


还没有评论,来说两句吧...