相关系数怎么算,相关系数k的计算公式两个公式?
弹簧系数k的计算公式为:k=(G×d^4)/(8×Nc×Dm^3)N/mm,其中G=线材的刚性模数,单位N/mm^2(即切变模量),d=线径(mm),D0=外径(mm)Dm=中径=D0-d(mm),N=总圈数,Nc=有效圈数=N-2。

一次函数的相关系数r的计算公式?
相关系数越大,说明两个变量之间的关系就越强。
样本的简单相关系数一般用r表示,计算公式为:r的取值在-1与+1之间,若r>0,表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;若r<0,表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。
r 的绝对值越大表明相关性越强,要注意的是这里并不存在因果关系。若r=0,表明两个变量间不是线性相关,但有可能是其他方式的相关(比如曲线方式)。
利用样本相关系数推断总体中两个变量是否相关,可以用t 统计量对总体相关系数为0的原假设进行检验。若t 检验显著,则拒绝原假设,即两个变量是线性相关的;若t 检验不显著,则不能拒绝原假设,即两个变量不是线性相关。
一些实际工作者用非居中的相关系数(与Pearson系数不相兼容)。
例如:
假设五个国家的国民生产总值分别是1、2、3、5、8(单位10亿美元),又假设这五个国家的贫困比例分别是11%、12%、13%、15%、18%。
则有两个有序的包含5个元素的向量x、y:x = (1, 2, 3, 5, 8) 、 y = (0.11, 0.12, 0.13, 0.15, 0.18) 使用一般的方法来计算向量间夹角(参考数量积)。
上面的数据实际上是选择了一个完美的线性关系:y= 0.10 + 0.01 x。因此皮尔逊相关系数应该就是1。
把数据居中(x中数据减去 E(x) = 3.8 ,y中数据减去E(y) =0.138)后得到:x = (−2.8, −1.8, −0.8, 1.2, 4.2)、 y = (−0.028, −0.018, −0.008,0.012, 0.042)
两个向量的相关系数公式?
这是求相关度的结果,对于一般的矩阵x,执行a=corrcoef(x)后,a中每个值的所在行a和列b,反应的是原矩阵x中相应的第a个列向量和第b个列向量的相似程度(即相关系数)。计算公式是:c(1,2)/sqrt(c(1,1)*c(2,2)),其中c表示矩阵[f,g]的协方差矩阵,假设f和g都是列向量(这两个序列的长度必须一样才能参与运算),则得到的(我们感兴趣的部分)是一个数。
以默认的a=corrcoef(f,g)为例,输出a是一个二维矩阵(对角元恒为1),我们感兴趣的f和g的相关系数就存放在a(1,2)=a(2,1)上,其值在[-1,1]之间,1表示最大的正相关,-1表示绝对值最大的负相关
判定系数的概念及其计算公式?
相关系数计算公式:
判定系数计算公式:
r^2 = SSR/SST
两者的关系是:相关系数是仅被用来描述两个变量之间的线性关系的,但判定系数的适用范围更广,可以用于描述非线性或者有两个及两个以上自变量的相关关系
什么是相关系数?
相关系数说明两个现象之间相关关系密切程度的统计分析指标。相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。γ>0为正相关,γ<0为负相关。
1:衡量两个变量线性相关密切程度的量。对于容量为n的两个变量x,y的相关系数rxy可写为 ,式中 是两变量的平均值 所属学科:大气科学(一级学科);气候学(二级学科)
定义2:由回归因素所引起的变差与总变差之比的平方根。
拓展资料
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。于是,著名统计学家卡尔·皮尔逊设计了统计指标--相关系数(Correlation coefficient)。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
例1.若将一枚硬币抛n次,X表示n次试验中出现正面的次数,Y表示n次试验中出现反面的次数。计算ρXY。
解:由于X+Y=n,则Y=-X+n,根据相关系数的性质推论,得ρXY = − 1。
例2.已知随机变量X、Y分别服从正态分布N(1,9),N(0,16)且X,Y的相关系数
设,求证X,Z相互独立。
证明:由已知得E(X)=1,D(X)=9,E(Y)= 0,D(Y) = 16
由于正态分布的随机变量的线性组合仍然服从正态分布,知Z是正态变量。
根据数学期望的性质有
根据方差的性质有得
由于 E(XY) = Cov(X,Y) + E(X)E(Y) = − 6,
E(X) = D(X) + [E(X)] = 10
ρXZ = 0,X,Z不相关。
由于正态随机变量的相互独立与互不相关等价,故X,Z相互独立。
因此,一般情况下两个随机变量不相关不一定相互独立。不相关仅指随机变量之间没有线性关系,而相互独立则表明随机变量之间互不影响,没有关系。


还没有评论,来说两句吧...