常见导数公式,函数求导公式与解题技巧?
判断函数类型:初等函数,分段函数,变限积分函数,隐函数,参数方程,反函数等等。2,应用相应求导方法,比如隐函数我们通常用微分法,参数方程求导又是不同的表达形式,反函数求导又是一个方法。求导在高数里面是非常简单和基本的知识。只要函数类型掌握了,每种函数求导方法会运用。则求导没有题目做不出来。

分数求导公式?
公式:(U/V)'=(U'V-UV')/(V^2)
分数求导,结果为0
分式求导:
结果的分子=原式的分子求导乘以原式的分母-原式的分母求导乘以原式的分子
结果的分母=原式的分母的平方。
即:对于U/V,有(U/V)'=(U'V-UV')/(V^2)
扩展资料:
基本求导公式
给出自变量增量 ;得出函数增量 ;作商 ;求极限 。
求导四则运算法则与性质
若函数 都可导,则
2.加减乘都可以推广到n个函数的情况,例如乘法:
3.数乘性:作为乘法法则的特例若为 常数c,则 ,这说明常数可任意进出导数符号。
4.线性性:求导运算也是满足线性性的,即可加性、数乘性,对于n个函数的情况:反函数求导法则若函数 严格单调且可导,则其反函数 的导数存在且 。
复合函数求导法则若 在点x可导 在相应的点u也可导,则其复合函数
在点x可导且 。
导数公式:
1.C'=0(C为常数);
2.(Xn)'=nX(n-1) (n∈R);
3.(sinX)'=cosX;
4.(cosX)'=-sinX;
5.(aX)'=aXIna (ln为自然对数);
6.(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1);
7.(tanX)'=1/(cosX)2=(secX)2
8.(cotX)'=-1/(sinX)2=-(cscX)2
9.(secX)'=tanX secX;
10.(cscX)'=-cotX cscX;
导数的乘法公式?
设u=u(x),v=v(x),则(uv)'=u'v+uv',这就是乘法的导数公式。求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
分子求导公式是什么?
分式求导公式:f(x)=2/x+1。一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。y导数是什么公式?
八个公式:y=c(c为常数) y'=0;y=x^n y'=nx^(n-1);y=a^x y'=a^xlna y=e^x y'=e^x;y=logax y'=logae/x y=lnx y'=1/x ;y=sinx y'=cosx ;y=cosx y'=-sinx ;y=tanx y'=1/cos^2x ;y=cotx y'=-1/sin^2x。
运算法则:
加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
扩展资料
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。


还没有评论,来说两句吧...