拉梅系数,物理关于劲度系数?
定律定义
F=-k·x
胡克定律由R.胡克于1678年提出,表达式为F=-k·x或△F=-k·Δx,其中k是常数,是物体的劲度系数(倔强系数)(弹性系数)。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
胡克定律的推论
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力F和弹簧的伸长量(或压缩量)x成正比,即F= k·x 。k是物质的弹性系数,它只由材料的性质所决定,与其他因素无关。负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
满足胡克定律的弹性体是一个重要的物理理论模型,它是对现实世界中复杂的非线性本构关系的线性简化,而实践又证明了它在一定程度上是有效的。然而现实中也存在这大量不满足胡克定律的实例。胡克定律的重要意义不只在于它描述了弹性体形变与力的关系,更在于它开创了一种研究的重要方法:将现实世界中复杂的非线性现象作线性简化,这种方法的使用在理论物理学中是数见不鲜的。
Fn ∕ S=E·(Δl ∕ l。)
式中Fn表示内力,S是Fn 作用的面积,l。是弹性体原长,Δl是受力后的伸长量,比例系数E称为弹性模量,也称为杨氏模量,由于应变ε=Δl ∕ l。为纯数,故弹性模量和应力σ=Fn ∕ S具有相同的单位,弹性模量是描写材料本身的物理量,由上式可知,应力大而应变小,则弹性模量较大;反之,弹性模量较小。弹性模量反映材料对于拉伸或压缩变形的抵抗能力,对于一定的材料来说,拉伸和压缩量的弹性模量不同,但二者相差不多,这时可认为两者相同。
广义胡克定理
应力应变曲线
胡克定律的内容为:在材料的线弹性范围内(见上图的材料应力应变曲线的比例极限范围内),固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式:
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模量。这些关系也可写为:
E为弹性模量(或杨氏模量);v为泊松比。λ、G、E和v之间存在下列联系:
式(1)适用于已知应变求
材料力学弹性理论公式?
求解弹性力学有类方程,共15个方程。3个平衡方程,6个物理方程,6个几何方程。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其他外界因素作用下产生的变形和内力,又称弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。一、变形连续规律 弹性力学(和刚体的力学理论不同)考虑到物体的变形,但只限于考虑原来连续、变形后仍为连续的物体,在变形过程中,物体不产生新的不连续面。
如果物体中本来就有裂纹,则弹性力学只考虑裂纹不扩展的情况。
若所考虑的物体Q在其一部分边界B1上和另一物体Q1相连接,而且Q在B1上的位移为已知量,在B1上便有位移边界条件:二、应力-应变关系 弹性体中一点的应力状态和应变状态之间存在着一定的联系,这种联系与如何达到这种应力状态和应变状态的过程无关,即应力和应变之间存在一一对应的关系。
若应力和应变呈线性关系,这个关系便叫作广义胡克定律,各向同性材料的广义胡克定律有两种常用的数学形式:式中为应力分量;λ和G为拉梅常数,G又称剪切模量;E为杨氏模量(或弹性模量);v为泊松比(见材料的力学性能)。
λ、G、E和v四个常数之间存在下列联系:
三、运动(或平衡)规律 处于运动(或平衡)状态的物体,其中任一部分都遵守力学中的运动(或平衡)规律,即牛顿运动三定律,反映这个规律的数学方程有两类:运动(或平衡)微分方程和载荷边界条件。
在笛卡儿坐标系中,运动(或平衡)微分方程为:类似地,在方程(6)中略去惯性力,便可得到用位移分量表示的平衡微分方程。
如果考虑物体一部分边界B2是自由的,在它的上面有给定的外载荷,则根据作用力和反作用力大小相等方向相反的原理,在B2上有如下载荷边界条件:对弹性力学的动力问题,还需说明物体的初始状态,即:
克拉佩龙方程考计算题吗?
适用于纯物质的任意两相平衡 克拉佩龙方程应用于凝聚相之间的平衡。 伯诺瓦·保罗·埃米尔·克拉佩龙法国物理学家,在热力学研究方面有很大贡献。 克拉佩龙生于巴黎,1818年从巴黎综合理工学院毕业,之后和朋友加布里埃尔·拉梅一起进入国立巴黎高等矿业学校接受工程师训练。俄国沙皇亚历山大一世当时正在招募技术人才到俄国组织工程项目和普及工程教育,1820年克拉佩龙和拉梅一起前往圣彼得堡执教,指导工程项目,并一起发表了多篇论文。 克拉佩龙进一步发展了可逆过程的概念,给出了卡诺定理的微分表达式,是热力学第二定律的雏形。他用这一发现扩展了克劳修斯的工作,建立了计算蒸气压随温度变化系数的克劳修斯-克拉佩龙方程 他发表了一篇以“热的推动力”为题目的一篇报告,其中他扩展了两年前去世的物理学家尼古拉·莱昂纳尔·萨迪·卡诺的工作。虽然卡诺已经发展了一种更为清晰的分析热机的方法,他仍然使用了繁冗落后的热质说来解释。 克拉佩龙还曾对理想气体进行过研究,他将波义耳定律和查理-盖吕萨克定律结合起来,把描述气体状态的三个参数:压强、体积、和温度归于一个方程,体积和压力的乘积与热力学温度成正比,被称为克拉佩龙方程。
拉牙胡克定律?
胡克定律
Hook's law
材料力学和弹性力学的基本规律之一。由R.胡克于1678年提出而得名。胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式:
σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23,
σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1)
σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比。λ、G、E和v之间存在下列联系: 式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
根据无初始应力的假设,(f 1)0应为零。对于均匀材料,材料性质与坐标无关,因此函数 f 1 对应变的一阶偏导数为常数。因此应力应变的一般关系表达式可以简化为
上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数。
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。
还没有评论,来说两句吧...