第一型曲面积分,曲面积分有没有极坐标表示形式?
是有的。

因为对于曲面积分的计算,我们都是先根据不同的情况化为二重或者三重积分来计算的。第一类曲面积分的一般算法是化为二重积分计算,第二类曲面积分一般算法也是化为二重积分计算,但是形式不同。
此外,第二类曲面积分如果是封闭并且满足相关条件,能够通过高斯公式化成三重积分计算。
而既然是二重或者三重积分的计算,那么我们当然能够使用极坐标系去计算了,之所以没有讲,我觉得是因为这件事情应该是非常明显的,并不需要特别去说一句。
说到底,对于曲面和曲线的积分,我们都是化成一次积分或者累次积分的形式,也就是重积分去计算的。所以重积分能够用的,曲面积分也能够用。
不过需要特别提醒的是,有一些技巧在重积分里面能用,但在曲面积分和曲线积分里面可能就有所限制了。比如说,我们有时候会用对称性去简化运算,但是对于重积分和第一类曲线积分和第一类曲面积分是能够用这个的,但是对于第二类曲线积分和第二类曲面积分就不能使用了。这是因为第二类的实际上是矢量运算,所以并不是说区域对称就能够对积分使用对称性的。
曲面积分是谁提出的研究?
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。定义在曲面上的函数或向量值函数关于该曲面的积分。曲面积分一般分成第一型曲面积分和第二型曲面积分。第一型曲面积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。第二型曲面积分物理意义来源对于给定的空间曲面和流体的流速,计算单位时间流经曲面的总流量。
三维空间曲线积分和曲面积分区别?
二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积。。三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量。。
第一类曲线积分,可以看做一个密度函数f,对曲线长度s的积分,所以他表示的是曲线s的质量。
第二类曲线积分,可以看做一个变力f,对曲线切向的积分,所以他表示的是变力f沿曲线做的功。
第一类曲面积分,可以看做一个密度函数f,对曲面面积S的积分,所以他表示的是曲面S的质量。
第二类曲面积分,可以看做一个磁场强度f,对曲面法向的积分,所以他表示的是的磁通量。物理上形象的说,就是通过某个曲面的磁感线条数。。。
曲面积分几何意义?
曲面积分一般分成第一型曲面积分和第二型曲面积分。
第一型曲面积分几何意义来源于对给定密度函数的空间曲面,计算该曲面的质量。
第二型曲面积分几何意义来源对于给定的空间曲面和流体的流速,计算单位时间流经曲面的总流量。
曲面可以看作是一条动线(直线或曲线)在空间连续运动所形成的轨迹,形成曲面的动线称为母线。
母线在曲面中的任一位置称为曲面的素线,用来控制母线运动的面、线和点称为导面、导线和导点。
曲面积分与方向有关吗?
1、第一类没方向,有几何意义和物理意义;第二类有方向,只有物理意义。
2、一类曲线是对曲线的长度,二类是对x,y坐标.怎么理解呢?告诉你一根线的线密度,问你线的质量,就要用一类.告诉你路径曲线方程,告诉你x,y两个方向的力,求功,就用二类.二类曲线也可以把x,y分开,这样就不难理解一二类曲线积分之间的关系了,它们之间就差一个余弦比例.
一二类曲面积分也是一样的.一类是对面积的积分,二类是对坐标的.告诉你面密度,求面质量,就用一类.告诉你x,y,z分别方向上的流速,告诉你面方程,求流量,就用第二类.同理,x,y,z方向也是可以分开的,分开了也就不难理解一二类曲面积分的关系了.


还没有评论,来说两句吧...