微分方程数值解,微分方程的解答有什么技巧?
一阶微分方程如果式子可以导成y'+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解若式子可变形为y'=f(y/x)的形式,设y/x=u 利用公式du/(f(u)-u)=dx/x求解若式子可整理为dy/f(y)=dx/g(x)的形式,用分离系数法,两边积分求解二阶微分方程y''+py'+q=0 可以将其化为r^2+pr+q=0 算出两根为r1,r2。 1 若实根r1不等于r2 y=c1*e^(r1x)+c2*e^(r2x). 2 若实根r1=r2 y=(c1+c2x)*e^(r1x) 3 若有一对共轭复根 r1=α+βi r2=α-βi y=e^(αx)[C1cosβ+C2sinβ]前几天刚考完试,根据常出的题型自己做的总结,希望有用处

微分方程式的阶和次是什么意思?
次数是通常是方程未知数x的次数,就是x的指数。阶数是求导的次数,是针对y而言的。
微分方程的特解形式?
根据线性方程的叠加原理,原非齐次线性方程的特解是y''+y=x^2+1的特解与y''+y=sinx的特解之和。
因为0不是特征方程的根,所以y''+y=x^2+1的特解设为ax^2+bx+c。
因为±i是特征方程的单根,所以y''+y=sinx的特解设为x(Acosx+Bsinx)。
所以,原非齐次线性方程的特解设为ax^2+bx+c+x(Acosx+Bsinx)。
简介:
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部分性质。
在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。 动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度
二阶微分方程三种情况公式?
形式:y”+py’+qy=0,特征方程r2+pr+q=0
特征方程r2+pr+q=0的两根为r1,r2 微分方程y”+py’+qy=0的通解
两个不相等的实根r1,r2 y=C1er1x+C2er2x
两个相等的实根r1=r2 y=(C1+C2x)er1x
一对共轭复根r1=α+iβ,r2=α-iβ y=eαx(C1cosβx+C2sinβx)
微分方程的解法?
要了解微分方程,得从微分说起,微分的核心是变化率。就比如速度v = d x d t v=frac{dx}{dt}v=
dt
dx
,即每一时刻距离的变化;而加速度a = d v d t a=frac{dv}{dt}a=
dt
dv
,即每一时刻速度的变化。
有了这个概念后,我们再来看微分方程,简单来说就是由变化率构成的一个方程。其使用场景为:描述相对变量比绝对量更容易时。
微分方程分为两部分:
常微分方程(Ordinary Differential Equations, ODE):函数自变量只有一个,如:y ′ ( x ) = p y + q y'(x)=py+qy
′
(x)=py+q。
偏微分方程(Partial Differential Equations, PDE):函数有多个自变量,如:∂ T ∂ t ( x , y , t ) = ∂ 2 T ∂ x 2 ( x , y , t ) + ∂ 2 T ∂ y 2 ( x , y , t ) frac{partial T}{partial t}(x,y,t)=frac{partial^2T}{partial x^2}(x,y,t)+frac{partial^2T}{partial y^2}(x,y,t)
∂t
∂T
(x,y,t)=
∂x
2
∂
2
T
(x,y,t)+
∂y
2
∂
2
T
(x,y,t)
微分方程也可以分为一阶方程和高阶方程,具体的组成(解法)如下图:
微分方程
2 一阶方程
2.1 一阶线性微分方程


还没有评论,来说两句吧...