局部保号性,函数与极限对应法则?
函数与极限

1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理:有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.
关于函数极限局部保号性和保不等式性地证明?
设函数为 f(x),若其在x0处有极限,且有f(x0)>0,
那么根据定义,对任意的ε>0,存在δ>0, 满足 |f(x)-f(x0)|<ε,
即有 f(x0)-ε<f(x)<f(x0)+ε.
当取 ε=f(x0),则上式变为 0=f(x0)-f(x0)<f(x),在(x0-δ,x0+δ)上成立。
即找到一个区间上,f(x)大于零。
我们称此为局部保号性(号为函数值的正负号):即若其在x0处有极限,有f(x0)>0,则可找到一个区间上恒有f(x)>0;f(x0)<0时同样成立;f(x0)=0不存在保号性。并且只能推出局部保号性,因为f(x0)>0肯定不能说明对所有的x f(x)>0.
xx趋于无穷大怎么算?
极限为0,因为当x趋近于无穷大的时候sinx的取值范围是[-1,1]。而x为分母,当趋近于无穷大的时候sinx/x的极限是0。
极限的定义:
极限是微积分中的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限的概念最终由柯西和魏尔斯特拉斯等人严格阐述。在现代的数学分析教科书中,几乎所有基本概念(连续、微分、积分)都是建立在极限概念的基础之上。
极限性质:
1.极限的不等式性质
2.收敛数列的有界性
设Xn收敛,则Xn有界。(即存在常数M>0,|Xn|≤M, n=1,2,...)
3.夹逼定理
4.单调有界准则:单调有界的数列(函数)必有极限
函数极限的基本性质
1.极限的不等式性质
2.极限的保号性
3.存在极限的函数局部有界性
设当x→x0时f(x)的极限为A,则f(x)在x0的某空心邻域U0(x0,δ) = {x| 0 < | x - x0 | < δ}内有界,即存在 δ>0, M>0,使得0 < | x - x0 | < δ 时 |f(x)| ≤M.
4.夹逼定理
张宇脱帽法和戴帽法讲解?
张宇脱帽法和戴帽法都是局部保号性
脱帽法:若极限>0,则该点附近的函数>0。
戴帽法:若一点的函数值大于等于0,则该点的极限大于等于0。
注意脱帽法是严格不等的,戴帽法是不严格不等的。
二阶导数存在为什么能推出等于0?
函数极限的局部保号性设lim(x→x0)f(x)=A,且A>0(或A0,使得当0<|x-x0|0 在这里f'(x)=[f(x)-f(x0)](x-x0),把保号性中的f(x)替换成f'(x),并令x0=a,取右极限,则lim(x→a+)f(x)/(x-a)=f'(a)>0,而x-a>0,所以得到f(x)>0.意思就是说在(a,a+δ)上f(x)>0同理对b取左极限就可以得到在(b-δ,b)上f(x)<0 根据介值定理,在(a,b)上存在f(d)=0,即f(a)=f(d)=f(b)=0 对(a,d)使用罗尔定理有x1∈(a,d)使f'(x1)=0,同理对(d,b)使用罗尔定理有x2∈(d,b)使f'(x2)=0 那么对(x1,x2)使用罗尔定理,就有c∈(x1,x2),使f''(c)=0


还没有评论,来说两句吧...