matlab官网,MATLAB在逐渐被Python淘汰吗?
不会被取代,简单的说,Python是通用语言,什么都能做,而matlab擅长计算。

Python相比于Matlab的最大优势是:
Python是一门通用编程语言,实现科学计算功能的numpy、scipy、matplotlib只是Python的库和Package而已,除此之外Python还有用于各种用途的库和包,比如用于GUI的PyQt和wxPython,用于Web的Django和Flask
Matlab相比于Python最大的优势是:
它专门就是给数值计算开发的,在数值计算这个领域库最多、用的人最多、出的书最多
如何选择python和matlab如果你做策略研究,做数据分析,两者功能上差不多,但是应该选择matlab,因为:
Python的文档没有Matlab的详细。
Matlab将所有的功能整合了在一起,而Python需要自己一个一个安装所需要的包,不同的包的代码风格还不太一样。
如果你还要做网络爬虫,数据清洗等偏IT的工作,那么Python更优。
MATLABMATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。使用 MATLAB,可以较使用传统的编程语言(如 C、C++ 和 Fortran)更快地解决技术计算问题。
随着MATLAB工具箱的不断添加和完善,M语言也逐渐成为工程界的准通用标准语言,官网称:MATLAB - The Language Of Technical Computing。
大学理工科专业一般都开设了或选修或必修的MATLAB相关课程。很多新出版的教材,计算机辅助教学的工具软件开始选用MATLAB。
MATLAB以其简洁易学的语法、友好的界面和完善的文档系统逐渐深入人心并将继续扩大它的控制领地。
然而,MATLAB也有着很大的局限性。首先,是价格。作为一款商业软件,获得正版授权,价格不菲。就说最便宜的学生版,核心组件单个授权要花99刀,想使用额外工具箱,则是每个工具箱29刀。 正如你能想到的,商业版本更贵。
其次,是版权。mathworks论坛活跃着很多用户,也有很多有价值的代码,但是,版权归mathworks公司,要想使用必须获得它的授权。
再次,是语言完善性。MATLAB进行数学计算的表现无可置疑,但是实际的科学计算还有文件操作、界面设计等。MATLAB在这些领域功能较弱或者很麻烦。应该可以说,MATLAB不是一种完善的语言。
还有:学术界大量使用matlab做仿真,做研究的话容易找到代码参考;
语法相对python更灵活一些,matlab写程序基本不用套路,所谓老夫撸matlab就一个字,干;
有simulink。有人说simulink没什么用,其实还是挺有用的,比如通信建模,另外simulink可以生产DSP或者FPGA代码,有的时候很有用。
Python首先,Python完全免费,绝大多数科学计算相关扩展库也都是免费的,大多也都是是开源的,所以金钱问题完全不用考虑。版权问题也基本不用考虑,众多的实例程序可以让你拿去就用。(有时候也需要考虑,因为有些授权,如GPL授权,具有“传染性”)。考虑控制版权更严格的诸如美国之类的国家,有着众多的研究人员和大学生使用Python,并有很多网络提供了交流平台,在这个平台可以获得更多的交流学习机会。
其次,Python是一门更易学更严谨的面向对象的程序设计语言。作为通用程序设计语言的Python,有更为严格清晰的语法,可以轻易完成界面、文件、封装等高阶需求。最后,不得不提的就是性能。MATLAB作为科学计算工具,经过了近乎苛刻的优化,Python呢?
实话说,纯Python的速度确实不怎么地,但是使用Python的科学计算扩展库numpy、scipy等之后,速度和MATLAB不相上下。
再次大的优势:开源。你可以大量更改科学计算的算法细节。
可移植性,Matlab必然不如Python。但你主要做Research,这方面需求应当不高。
第三方生态,Matlab不如Python。比如3D的绘图工具包,比如GUI,比如更方便的并行,使用GPU,Functional等等。长期来看,Python的科学计算生态会比Matlab好。语言更加优美。另外如果有一定的OOP需求,构建较大一点的科学计算系统,直接用Python比用Matlab混合的方案肯定要简洁不少。
python作为一种通用编程语言,可以做做Web,搞个爬虫,编个脚本,写个小工具用途很广泛。
python和matlab哪一个更容易学?
大家好!我是黑客之家小编,黑客之家头条号
分享黑客技术,GO、Python、Kotlin、Android、Java编程知识,科技资讯等
喜欢的朋友可以关注我的头条号!
如果python和matlab两个中选择一个的话,那么当然是选择matlab。无论是从简单易学还是从就业前景方向上看。python编程语言最近很火,一个原因是因为机器学习领域有很多框架都采用python做为前端语言,另一个原因python语言本身也可以应用到多个领域中,如爬虫、数据分析、web编程、服务器运维、自动化测试等。
python能应用很广泛主要还是因为python语言简单易学,新手也可以很快学会。如果有编程经验,可能一周就可以用python来编写简单程序。正因为如此有很多人使用python语言,python有很多框架可以直接拿来使用,这样更多的人选择了python。但是如果学习python要注意,学习python3,不要学习python2了,现在官方已经不支持了,新手直接学习python3更好。
学习python可以直接到python官方网站下载自己对应操作系统的版本。
官方网站上最新版本已经更新到python 3.8.1。
相比之下matlab的应用场景就比较单一,主要应用于数据可视化、数据分析、数值计算,主要应用于科学计算领域。如下图matlab对复杂数据公式的数据可视化
在数据可视化,科学计算方向python也有对应的框架来实现类似matlab功能,如matplotlib。
所以python和matlab之间选择一定是选择python,学习Python会有更好的发展前景。
Python是学什么的?
为什么这么多人在学Python呢?很多小白都听说Python很火,简单易学,学起来很容易,学习周期短,可是为啥要学Python呢?,下面谈谈我对Python的感悟。
在PC时代大量的嵌入式的设备,底层的代码,底层原理,以及底层逻辑运用,以及桌面的应用都是用C、C++实现的,毋庸置疑它们是最接近底层,对底层有着强大的解释说服力,也是最早的、最快的。随着2000年电商的大规模的兴起,多数人融入到这个大家庭中,逐渐地从PC时代过度到互联网时代,Java开始王者归来,再加上2010移动互联网的爆发Android开始风靡起来,Java更是如日中天,走向了辉煌。那我们现在为什么要学习Python呢?Python到底是用来干什么的?1、Web开发Python的诞生历史比Web还要早,由于Python是一种解释型的脚本语言,开发效率高,所以非常适合用来做Web开发,大大提高了做web开发人员的效率。Python有上百种Web开发框架,有很多成熟的模板技术,选择Python开发Web应用,不但开发效率高,而且运行速度快,加快了时代的发展。常用的web开发框架有:Django、Flask、Tornado 等。许多知名的互联网企业或者小型公司将Python作为主要开发语言:豆瓣、知乎、果壳网、Google、NASA、YouTube、Facebook……由于后台服务器的通用性,除了狭义的网站之外,很多App和游戏的服务器端也同样用 Python实现,来运行,完成相应的工作。一个Web应用的本质就是:浏览器发送一个HTTP请求;服务器收到请求,生成一个HTML文档;服务器把HTML文档作为HTTP响应的Body发送给浏览器;浏览器收到HTTP响应,从HTTP Body取出HTML文档并显示。所以,最简单的Web应用就是先把HTML用文件保存好,用一个现成的HTTP服务器软件,接收用户请求,从文件中读取HTML,返回。Apache、Nginx、Lighttpd等这些常见的静态服务器就是干这件事情的,完成这些事情的。如果要动态生成HTML,就需要把上述步骤自己来实现。不过,接受HTTP请求、解析HTTP请求、发送HTTP响应都是苦力活,如果我们自己来写这些底层代码,还没开始写动态HTML呢,就得花个把月去读HTTP规范。正确的做法是底层代码由专门的服务器软件实现,我们用Python专注于生成HTML文档。因为我们不希望接触到TCP连接、HTTP原始请求和响应格式,所以,需要一个统一的接口,让我们专心用Python编写Web业务。这个接口就是WSGI:Web Server Gateway Interface。(Web服务器网关接口)wsgi就是一种规范,它定义了使用web应用程序与Python编写的web服务器程序之间的接口格式。无论多么复杂的Web应用程序,入口都是一个WSGI处理函数。HTTP请求的所有输入信息都可以通过environ获得,HTTP响应的输出都可以通过start_response()加上函数返回值作为Body。WSGI接口定义非常简单,它只要求Web开发者实现一个函数,就可以响应HTTP请求。我们来看一个最简单的Web版本的“Hello,web!”:上面的application()函数就是符合WSGI标准的一个HTTP处理函数,它接收两个参数:environ:一个包含所有HTTP请求信息的dict对象;start_response:一个发送HTTP响应的函数。在application()函数中,调用:就发送了HTTP响应的Header,注意Header只能发送一次,也就是只能调用一次start_response()函数。start_response()函数接收两个参数,一个是HTTP响应码,一个是一组list表示的HTTP Header,每个Header用一个包含两个str的tuple表示。通常情况下,都应该把Content-Type头发送给浏览器。其他很多常用的HTTP Header也应该发送。然后,函数的返回值'<h1>Hello, web!</h1>'将作为HTTP响应的Body发送给浏览器。有了WSGI,我们关心的就是如何从environ这个dict对象拿到HTTP请求信息,然后构造HTML,通过start_response()发送Header,最后返回Body。了解了WSGI框架,我们发现:其实一个Web App,就是写一个WSGI的处理函数,针对每个HTTP请求进行响应。但是如何处理HTTP请求不是问题,问题是如何处理100个不同的URL。由于用Python开发一个Web框架十分容易,所以Python有上百个开源的Web框架。各种Web框架的优缺点自己去了解一下就可以了,直接选择一个比较流行的Web框架——Flask来使用。除了Flask,常见的Python Web框架还有:Django:全能型Web框架;web.py:一个小巧的Web框架;Bottle:和Flask类似的Web框架;Tornado:Facebook的开源异步Web框架。做一个游戏2、网络爬虫许多人对编程的热情始于好奇,终于停滞,小有成就就止步于此。距离真枪实干做开发有技术差距,也无人指点提带,也不知当下水平能干嘛?就在这样的疑惑循环中,编程技能止步不前,而爬虫是最好的进阶方向之一。网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了,如:从各大网站爬取商品折扣信息,比较获取最优选择;对社交网络上发言进行收集分类,生成情绪地图,分析语言习惯;爬取网易云音乐某一类歌曲的所有评论,生成词云;按条件筛选获得豆瓣的电影书籍信息并生成表格……应用实在太多,几乎每个人学习爬虫之后都能够通过爬虫去做一些好玩有趣有用的事。例子:爬取网络上的歌曲3、人工智能人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?因为Python有很多库很方便做人工智能,比如numpy, scipy做数值计算的,sklearn做机器学习的,pybrain做神经网络的,matplotlib将数据可视化的。在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。人工智能的核心算法大部分还是依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到,所有c/c++和P相结合就可以实现人工智能。4、Python的其他应用举例系统编程:提供API,能方便进行系统维护和管理,Linux下标志性语言之一,是很多系统管理员理想的编程工具。图形处理:有PIL、Tkinter等图形库支持,能方便进行图形处理。数学处理:NumPy扩展提供大量与许多标准数学库的接口。文本处理:Python提供的re模块能支持正则表达式,还提供SGML,XML分析模块,许多程序员利用Python进行XML程序的开发。数据库编程:程序员可通过遵循PythonDB-API(数据库应用程序编程接口)规范的模块与MicrosoftSQLServer,Oracle,Sybase,DB2,MySQL、SQLite等数据库通信。Python自带有一个Gadfly模块,提供了一个完整的SQL环境。网络编程:提供丰富的模块支持sockets编程,能方便快速地开发分布式应用程序。很多大规模软件开发计划例如Zope,Mnet及BitTorrent.Google都在广泛地使用它。Web编程:应用的开发语言,支持最新的XML技术。多媒体应用:Python的PyOpenGL模块封装了“OpenGL应用程序编程接口”,能进行二维和三维图像处理。PyGame模块可用于编写游戏软件。黑客编程: Python有一个hack的库,内置了你熟悉的或不熟悉的函数,但是缺少成就感。以上内容分享自华为云社区《【云驻共创】你知道在未来Python主要的运用途径和领域吗?》,作者:楠羽。matlab配什么电脑?
具体看什么版本,一般官网都有说明。做具体计算配专用计算服务器比较好。
matlab?
前言:matlab只是个软件,用来完成机械的计算,而如何安排这些计算,需要用户掌握最基本的数学概念。这篇将介绍工程数学中常用的数学概念,与matlab似乎并不相关,但实则是matlab的基础。
1.数值与符号
如果给工程数学问题分类,最大的两类肯定是数值问题和符号问题,对应matlab的数值运算和符号运算。简而言之,数值运算就是所有的变量的值已知,求解的也是一些具体的值;符号运算则刚好相反,不要求所有的变量都已知,求解的结果也不是变量具体的值,而是变量之间的关系。一个简单的例子是
①数值问题:求解一元二次方程,ax2+bx+c=0,其中a=b=c=1,所求得的结果一定是x=几点几+几点几i,是个复数,是个具体的数值。
②符号问题:求解一元二次方程,ax2+bx+c=0,所求的的结果一定是x=求根公式,是abc的函数,是个关系
可见,一个问题是数值问题还是符号问题,很大程度上决定于结果需要求解的是数值还是关系。当然两个问题也可以相互转化,比如数值问题的一元二次方程,我们一般会先转化成符号问题,把abc代入求根公式,求出来变量x的具体数值。但实际中,一般我们并不推荐这样做,原因是matlab的数值和符号是完全不同的两套系统,相互转化不仅需要多余的数值符号转换语言,更可能带来查错的不便。
2.典型数值问题
以下是常见的数值问题,文中提到的解法均可在数值计算、科学计算、数值算法这类书中找到。
2.1代数方程
代数方程又分为线性方程和非线性方程,线性方程一般可以转化为矩阵形式AX=b,对A求逆即可。求逆的数值解法一般有高斯赛德尔迭代,超松弛迭代等。非线性方程一般转化为f(x)=zeros其中x是个向量,右侧的zeros表示f是个多输出函数,数值解法一般是迭代,常见的有牛顿迭代,最速梯度,点斜式等。
2.2常微分方程
常微分方程一般转化为Dy=f(y,t),且y(0)=y0是初始条件,其中y和Dy都是向量,f也是个多输出函数,数值解法有欧拉法,龙格库塔法。
2.3偏微分方程
偏微分方程比较复杂,matlab处理偏微分方程也不专业,我也几乎不用matlab处理这类问题。但工程数学上,偏微分方程的解法有两类,差分法和有限元法。差分法需要采用中心差分,迎风差分等。有限元需要计算刚度矩阵等。
2.4插值和拟合
插值和拟合是完全不同的两个数学概念,虽然很多时候很多人都混淆了。两者的描述都可以归结为:已知函数上的点(x1,y1),(x2,y2)...(xn,yn),求一个已知的x,对应的y的数值。插值常用的多项式插值,三次样条插值。拟合的本质是一个最优化问题,其中最常用的一种拟合是线性拟合,求解方法是最小二乘法。
2.5离散周期傅里叶变换
严格说来,这并不能算一个数学问题,只是一种运算方式,就好像加减乘除一样。特殊性在于这种变换是对于一个向量进行,且运算后的结果依然是个向量。这里提出来是为了强调这种傅里叶变换的限定,要求是离散周期,这也是数值方法能处理的唯一一种傅里叶变换。
2.6最优化问题
最优化问题比较宽泛,一般可以归结为求目标函数f(x)的最大或者最小值,其中f是一个单输出的函数,x是一个向量。其中x需要满足线性约束条件、非线性约束条件、上下界。具体的解法有最速梯度,遗传,蚁群,退火等算法。
2.7数值积分
已知函数上的点(x1,y1),(x2,y2),...(xn,yn),求函数在x1到xn的定积分。常见算法有矩形公式,梯形公式,辛普森公式。类似的问题还有数值求导。
3.典型符号问题
以下是常见的符号问题,需要特别指出的是,无解问题。数值问题中也有一部分无解问题,但大多数工程中是碰不到的。而符号问题恰好相反,绝大部分我们遇到的符号问题都是没有解的,或者准确的说,没有解析解。比如求一元五次方程,我们知道x和这些系数存在关系,但无法写出显式的表达式,也就是说没有解析解。
3.1递推转通项
这个问题可以归结为:已知xn+1=f(xn),求xn,常见于数列的推导。
3.2代数方程
区别于数值问题中的代数方程, 这里的代数方程问题可以描述为:f(x,c)=0,求x=x(c),这里需要求解的其实是x和c的关系。
3.3常微分方程
区别于数值问题中的常微分数方程, 这里的代数方程问题可以描述为:Dy=f(y,t,c),求y=x(t,c),一般无需初值条件。
3.4符号积分
区别于数值问题中的数值积分,这里的符号积分可以描述为:已知函数关系y=f(x),求y的不定积分。同样的问题还有符号求导。
matlab最基础教程(一):软件基本概念
前言:①如果你是第一次使用matlab,建议阅读本教程。②以2017a版本为基础,适用于2014a及之后的版本,之前的版本未测试。③结合这两个月在坛子里回答的问题,整理成教程,水平有限,欢迎指正。
1.matlab的界面
home标签下,找到layout进行设置/复位,可以设置各板块的显示与隐藏。其中有几个部分,请务必要显示
①Current Folder:中文一般翻译成工作路径,一般设置成一个自己建立的、有读写权限的文件夹,例如我的文档下建立一个matlab文件夹
②Command Window:字面意思是命令窗口,用来运行代码,所有的代码都是在这里输入
③Workspace:字面意思是工作空间,其实就是暂存所有运行结果的地方,“暂”的具体含义是:关闭matlab后丢失
2.软件中的基本概念
2.1 函数
matlab之所以强大,就是因为提供大量的函数,你也可以建立自定义函数,方法是:Home->New->function。自定义函数一般保存在工作路径下。函数文件的特征是:扩展名m,内容的第一行以function开头,后续内容是“输出变量=函数名(输入变量)”。且函数名和文件名相同。
每个函数在Command Window中运行,用来完成特定的计算任务,运行方式是输入“输出变量=函数名(输入变量)”,然后按回车。例如有个系统自带的函数是用来求绝对值的,函数名abs,所以在Command Window里输入“a=abs(-1)”,就会显示运算结果为“a=1”。且运算结果会在Workspace里出现一个变量a,双击后可看到a的值是1。
2.2 脚本
可以理解为特殊的函数,这种函数内容的开头没有function那行,因此没有输入、输出变量,也没有函数名。文件扩展名和函数一样是m,也需要在Command Window里运行。脚本都是用户建立的,方法是:Home->New Script。一般保存在工作路径下。脚本的功能就是完成用户需要的、复杂的计算任务,通常脚本里会调用很多函数。
2.3 GUI
一般翻译为界面,就是人机交互界面的意思。写脚本处理问题的方法有点麻烦,让人看起来更像是码农,所以现在很多问题可以通过界面点点鼠标解决。这时候就需要打开界面,打开方法是:在APPS标签里可以找到所有已安装的GUI工具,单击即可。注意右边有个小三角可以点开。和函数一样,用户也可以自己建立自定义GUI,这部分较为复杂,对新手而言有点遥远。
2.4 toolbox
一般翻译成工具箱,matlab将功能相近或者应用上自成体系的一组函数和GUI打包成一个toolbox。正版的matlab在购买时,几乎每一个toolbox都是要单独收费的,所以toolbox也可以理解为matlab产品的模块,一个工具箱就是一个产品/商品。
2.5 simulink
一般用matlab解决问题的过程是:用户自定义脚本,在Command Window里运行脚本。而脚本的运行逻辑是顺序执行,和一般的编程一样。simulink则提供另一种思路,图形化编程,有点像labview,这种方法很适合于物理模型的仿真,因此有时用“matlab编程”和“simulink仿真”强调。使用方法是在home标签下点击simulink。
3.获得帮助
常用的获得帮助有四种方法
①home标签里,有个Help标志,点开后可以获得各工具箱/产品的完整帮助文档。新版本中默认使用在线,改用本地帮助的办法是在home标签里,Preferences下的matlab/Help里选择installed locally
②cn.mathworks.com官网上找到支持,然后可以获得教程。这种方法获得的帮助文档和第一种方法一样。
③在Command Window里输入 doc+函数名 来获得帮助。比如输入"doc fft"可以获得离散傅里叶变换函数fft的帮助和范例。这种方法获得的文档是前两种方法文档中的部分。当然,前提是你要知道函数名,才能找到帮助。这种方法适合于获得系统自带函数的使用说明。
④使用GUI时,通常界面的角落里有Help,点开可以获得帮助。这种方法获得的文档是第一和第二种方法文档中的部分。这种方法适合于获得系统自带GUI的使用说明。
这几种方法中,最常用的是第三种,只要知道自己需要的函数名,就可以用这种方式获得说明和范例。而实际使用中,一般常用的系统自带函数,也并不是非常多,大概几十个?真正需要牢记使用方法的可能就几个,通常都是知道函数名,要用的时候doc一下。


还没有评论,来说两句吧...