常数变易法,4x常数变易法?
dy/dx=x(4-2y)
dy/(2-y)=2xdx //: 分离变量法
-d(2-y)/(2-y)=2xdx
-ln(2-y)=x^2+c'
ln(2-y)=-x^2+c
2-y=e^(-x^2+c)
y=2-e^(-x^2+c)=2 - Ce^(-x^2)
y(x)=2 - Ce^(-x^2)
如果:y(0)=y0
那么:C=2-y0
最后:y(x) = 2 - (2-y0) e^(-x^2)
通解同义词?
没有同义词,意思是指透彻理解。
造句1、的通解是一个偶次幂级数和一个奇次幂级数的任意线性组合。
2、在研究激素类物质在动物体内代谢特征的基础上,建立了“有漏洞的二分域模型”及其通解公式。
3、本文使用全微分法和常数变易法,从不同角度给出伯努利方程通解的公式。
4、建设万里长江第一桥,“天堑变通途”;铺通解放大道,贯穿东西汉口的“彩虹”一跃成为与北京长安街、南昌八一路并驾齐驱的“三套车”。
一般微分方程求根公式?
这是我以前写的“低阶微分方程的一般解法”
一.g(y)dy=f(x)dx形式
可分离变量的微分方程,直接分离然后积分
二.可化为dy/dx=f(y/x)的齐次方程
换元,分离变量
三.一阶线性微分方程
dy/dx+P(x)y=Q(x)
先求其对应的一阶齐次方程,然后用常数变易法带换u(x)
得到通解y=e^-∫P(x)dx{∫Q(x)[e^∫P(x)dx]dx+C}
四.伯努利方程dy/dx+P(x)y=Q(x)y^n
两边同除y^n引进z=y^(n-1)配为线形一阶非齐次方程
然后代如通解,最后代入z=y^(n-1)
五.全微分方程P(x,y)dx+Q(x,y)dy=0
有解的充要条件为ap/ay=aQ/ax
此时通解为u(x,y)=∫(xo,x)P(x,y)dx+∫(yo,y)Q(x,y)dy=C
有的方程可通过乘积分因子得到全微分方程的形式.
二阶非齐次线性微分方程的通解结构?
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:1.如果f(x)=P(x),Pn(x)为n阶多项式;2.如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。

二阶常系数齐次线性微分方程
标准形式
y″+py′+qy=0
特征方程
r^2+pr+q=0
通解
1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2.两根相等的实根:y=(C1+C2x)e^(r1x)
3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
特解y*设法
1、如果f(x)=P(x),Pn(x)为n阶多项式。
若0不是特征值,在令特解y*=x^k*Qm(x)*e^λx中,k=0,λ=0;因为Qm(x)与Pn(x)为同次的多项式,所以Qm(x)设法要根据Pn(x)的情况而定。
比如如果Pn(x)=a(a为常数),则设Qm(x)=A(A为另一个未知常数);如果Pn(x)=x,则设Qm(x)=ax+b;如果Pn(x)=x^2,则设Qm(x)=ax^2+bx+c。
若0是特征方程的单根,在令特解y*=x^k*Qm(x)*e^λx中,k=1,λ=0,即y*=x*Qm(x)。
若0是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,λ=0,即y*=x^2*Qm(x)。
2、如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
若α不是特征值,在令特解y*=x^k*Qm(x)*e^αx中,k=0,即y*=Qm(x)*e^αx,Qm(x)设法要根据Pn(x)的情况而定。
若α是特征方程的单根,在令特解y*=x^k*Qm(x)*e^αx中,k=1,即y*=x*Qm(x)*e^αx。
若α是特征方程的重根,在令特解y*=x^k*Qm(x)*e^λx中,k=2,即y*=x^2*Qm(x)*e^αx。
3、如果f(x)=[Pl(x)cos(βx)+Pn(x)sin(βx)]e^αx,Pl(x)为l阶多项式,Pn(x)为n阶多项式。
若α±iβ不是特征值,在令特解y*=x^k*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx中,k=0,m=max{l,n},Rm1(x)与Rm2(x)设法要根据Pl(x)或Pn(x)的情况而定(同Qm(x)设法要根据Pn(x)的情况而定的原理一样)。
即y*=[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx
若α±iβ不是特征值,在令特解y*=x^k*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx中,k=1,即y*=x*[Rm1(x)cos(βx)+Rm2(x)sin(βx)]e^αx。
齐次方程的通解中为什么把c换成u?
常数变易法是求解微分方程的一种很重要的方法,常应用于一阶线性微分方程的求解。
数变易法中,将常数C换成u(x)就可以得到非齐次线性方程的通解。用u(x)代替C后,既能满足齐次方程,又能产出非齐次项,故一定可以找到合适的u(x),使得它由微分算子运算后得到原微分方程的非齐项,因此原微分方程的通解都可以写成y2=u(x)y1(x);(y1(x)是与它相应的齐次方程的通解)


还没有评论,来说两句吧...