夏普比率

评估投资机会的优劣应该从收益期望和风险两方面综合考虑。如何量化这一思想呢?1950年代,有人提出用回报期望和波动性的比例作为衡量投资机会的指标。1966年,学者夏普(William Sharpe)在此基础上提出了著名的夏普比率(Sharpe Ratio):
S = (R – r) / σ,
其中:R = 投资的回报期望值(平均回报率)
r = 无风险投资的回报率(可理解为投资国债的回报率)
σ = 回报率的标准方差(衡量波动性的最常用统计指标)
夏普比率S越高,投资机会的“质量”越高。举个例子:
甲投资:超额(超出国债)回报期望10%,标准差20%,夏普比率为0.5
乙投资:超额回报期望5%,标准差5%,夏普比率为1
乍一看,甲投资回报期望高,似乎是比较好的机会。其实乙投资更胜一筹(通常情况下),因为它的夏普比率高,意味着投资者用1个单位的“风险”能换取更多的回报期望。从杠杆投资的角度也可以得出同样的结论:假设投资者以r贷款利率融资,在乙投资机会上加1倍杠杆,那么“杠杆化”的乙投资就变成了10%回报期望,10%标准差,与甲投资的回报期望相同,而风险较小。
夏普比率多高才算“好”呢?我们来看一个实际的例子:美国股市的长期年平均回报率约为10%,波动性约为16%,无风险利率约为3.5%,因此夏普比率约为0.4(来源:维基百科)。翻译成白话就是:投资美股指数的年均回报率约比无风险利率高6.5%,但平均6年中有1年的回报率低于-6%(1倍标差之外)。
对于长线投资的散户而言,投资美股的风险/回报还算说的过去。如果是对冲基金经理,这样的夏普比率就太低了:假设你的目标是20%年回报率,就必需用2.5倍杠杆(回报期望 = 2.5*10% - 1.5*3.5% ≈ 20%),也就意味着平均6年中有1年的回报率将低于2.5*(10% - 16%)- 1.5*3.5% = -20%。你赔了超过20%,客户大概就要跑光了。
一般说来,夏普比率超过1才是“好游戏”。这种机会在“简单投资”中并不多见,因此职业投资者常常利用对冲手段“改造”投资游戏,提高夏普比率。《乱世华尔街》中多次提到,对冲与杠杆是一对孪生姐妹,两者往往配合使用,说得就是这个原理。
例如,你发明了一种方法,用各种资产相互对冲得到夏普比率为2的投资机会,那你就可以大胆加杠杆(数学好的同学们可以自己计算赔钱的概率),投资者大概要追着给你的对冲基金投钱了。但对冲+杠杆的投资方法通常有个“练门”:需要借很多钱,对流动性要求高,因此遇到突发性危机往往会出问题,《乱世华尔街》中就分析过LTCM和高盛Global Alpha基金的例子。
夏普比率也存在缺陷,它假设回报是正态分布,而实际的投资回报分布有“肥尾”(赔大钱的概率高于正态分布的估计),因此单纯根据夏普比率挑选投资机会存在问题,也容易被“操纵”。这个话题此处暂不展开讨论。
对普通投资者而言,夏普比率提示要从风险和回报的角度综合考虑,挑选“性价比”高的投资。这正是前面的文章中提到的观点:正回报的游戏要挑波动性小的,负回报的游戏如果非得玩,就挑波动性大的。总之,夏普比率越高越好。
夏普比率讲的是如何挑选“游戏”,而凯利公式讲的是选好了游戏后如何下注才能取得最优的长期回报率。现在我们就把两种方法配合起来使用,看看21点计牌到底是不是条发财的路。
关于夏普比例的补充说明
最近一直没写博客,主要是因为懒。今天过父亲节,酒足饭饱之后,忽觉髀肉复生,岁月蹉跎,老之将至,于是奋然提笔,续写“赌博与投资”系列。
上次谈到夏普比率,博友们提了不少问题,主要集中在几个方面:
第一个问题:关于美国股市的那个例子中,“平均6年中有1年的回报率低于-6%”是怎么算出来的?
夏普比率假设投资回报符合正态分布。从数学上说,大量独立随机事件之和一般符合正态分布。例如不停地扔硬币,正面为1,反面为-1,大量重复后结果之和就符合正态分布。
前面的博客提到过,学术界流行“有效市场理论”:股市每一步运动方向都是独立随机的,相当于不断“扔硬币”,最后回报率当然就符合正态分布。再讲下去就是数量金融的基础课《随机过程》了,就此打住。
正态分布的假设虽不完美,但不失为理解问题的基本框架。下图显示了正态分布的概率数值。例如,回报率在0倍到0.5倍标准差之间的概率为19.1%(图中绿色部分)。同理,回报率低于-1倍标准差(图中橙色部分)的概率约为16%。应用于美国股市(回报率中值10%,标准差16%),年回报率低于-1倍标准差,即10% - 16% = -6%的可能性约为1/6。“平均6年中有1年的回报率低于-6%”就是这么估算出来的。
第二个问题:夏普比率的假设有没有不符合实际之处?
当然有。正态分布的假设就不完美。实际上,股市运动不完全“独立随机”,否则我们就不需要费心研究什么规律了。例如在金融危机中,股市运动有很强的序列相关性(serial correlation),即所谓“趋势”,导致实际的股市回报有“肥尾”现象,就是说“跑到极端位置”的可能性高于正态分布的估计。
另外,夏普比率中的“无风险回报率”r是个模糊的概念,投资者的融资成本也不是r。再有,波动性的测算也并非简单问题。其他不一一介绍了,已有N多学术论文讨论夏普比率的局限性及改进方案。


还没有评论,来说两句吧...